On ADI Method for Sylvester Equations
نویسندگان
چکیده
This paper is concerned with numerical solutions of large scale Sylvester equations AX −XB = C, Lyapunov equations as a special case in particular included, with C having very small rank. For stable Lyapunov equations, Penzl (2000) and Li andWhite (2002) demonstrated that the so called Cholesky factored ADI method with decent shift parameters can be very effective. In this paper we present a generalization of Cholesky factored ADI for Sylvester equations. We also demonstrate that often much more accurate solutions than ADI solutions can be gotten by performing Galerkin projection via the column space and row space of the computed approximate solutions.
منابع مشابه
On the ADI method for Sylvester equations
This paper is concerned with the numerical solution of large scale Sylvester equations AX −XB = C, Lyapunov equations as a special case in particular included, with C having very small rank. For stable Lyapunov equations, Penzl (2000) and Li and White (2002) demonstrated that the so called Cholesky factor ADI method with decent shift parameters can be very effective. In this paper we present a ...
متن کاملComputing real low-rank solutions of Sylvester equations by the factored ADI method
We investigate the factored ADI iteration for large and sparse Sylvester equations. A novel low-rank expression for the associated Sylvester residual is established which enables cheap computations of the residual norm along the iteration, and which yields a reformulated factored ADI iteration. The application to generalized Sylvester equations is considered as well. We also discuss the efficie...
متن کاملOn the ADI method for the Sylvester Equation and the optimal-$\mathcal{H}_2$ points
The ADI iteration is closely related to the rational Krylov projection methods for constructing low rank approximations to the solution of Sylvester equation. In this paper we show that the ADI and rational Krylov approximations are in fact equivalent when a special choice of shifts are employed in both methods. We will call these shifts pseudo H2-optimal shifts. These shifts are also optimal i...
متن کاملOn the ADI method for the Sylvester Equation and the optimal-H2 points
The ADI iteration is closely related to the rational Krylov projection methods for constructing low rank approximations to the solution of Sylvester equation. In this paper we show that the ADI and rational Krylov approximations are in fact equivalent when a special choice of shifts are employed in both methods. We will call these shifts pseudo H2-optimal shifts. These shifts are also optimal i...
متن کاملTheoretical results on the global GMRES method for solving generalized Sylvester matrix equations
The global generalized minimum residual (Gl-GMRES) method is examined for solving the generalized Sylvester matrix equation [sumlimits_{i = 1}^q {A_i } XB_i = C.] Some new theoretical results are elaborated for the proposed method by employing the Schur complement. These results can be exploited to establish new convergence properties of the Gl-GMRES method for solving genera...
متن کامل